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INTRODUCTION 

The problem of pressurized thick-walled tubes is of practical importance 

to pressure vessels and the autofrettage process of gun barrels. Many 

solutions for this problem have been reported over the last three decades 

(refs 1-7).  This is a result of different mathematical methods, end 

conditions, and material models.  Different assumptions for the material 

properties such as compressibility, yield criterion, flow rule, hardening 

rule, etc. can lead to many material models.  A common feature in all earlier 

investigations is to introduce certain restrictive assumptions so as to 

simplify the mathematical analysis (refs 1-4). The recent development in 

numerical methods makes it possible to use a more realistic material model and 

to consider more general problems.  Both the finite element method (ref 5) and 

the finite difference method (refs 6,7) have been used to solve the elasto- 

plastic problems with different end conditions and more general loading 

conditions.  The material model was based on the von Mises yield criterion, 

the Prandtl-Reuss flow theory, and the isotropic hardening rule. 

The finite element method is more powerful and can be used to solve more 

general nonlinear problems (refs 8,9).  Many finite element codes have been 

developed as seen in a recent survey paper (ref 10).  The ADINA code, 

developed by K. .1. Bathe, is a general purpose finite element program for 

Automatic Dynamic Incremental Nonlinear Aaalysis (ref 11).  The standard 

version models the elastic-plastic behavior of metals by the use of the Mises 

yield criterion, the associated flow theory, and two strain-hardening rules - 

References are listed at the end of this report. 



isotropic and kinematic.  Both hardening models were limited to linear 

hardening In our first version acquired In 1981.  The multi-linear option was 

allowed in our second version one year later.  This report shows an 

application of the ADINA. code to our pressurized thick tube problems.  A 

multi-linear stress-strain curve is used in both material models and thick 

tubes of different wall ratios are considered.  The numerical results together 

with a brief summary of the elastic-plastic theory, finite element formulation 

are presented below with emphasis on the basic assumptions used.  More 

detailed theoretical information can be found in a forthcoming report (ref 

12), 

SLASTIG-PLAST1C THIiORY 

In elastic-plastic analysis the material behavior is described using 

three properties In addition to the elastic stress-strain relations, namely a 

yield criterion, a flow rule, and a hardening rule. 

The initial and subsequent yield condition for isothermal kinematic or 

isotropic hardening can be written as 

f(aij-(*ij) " <J(/deP) = 0 (1) 

where OJJ is the stress tensor, ay is a tensor denoting the translation of 

the yield surface, f is the yield function, and aCJde^) represents the 

dependence of the yield stress on the accumulated Increments of effective 

plastic-strain.  The von Mises yield function for kinematic hardening is 

f = [- (Si._ai.)(siraij)]l/2 (2) 



where 
1 

sij  ^ aij   ~ 3 akk5ij 

and 
ct-jj = 0 for isotropic hardening (3) 

Restricting the analysis to associated flow rules, the plastic strain 

increment de^P is derivable from the plastic potential function f by 

de-jjP = qijdX and qjj =» 3f/3ay (4) 

where dX is a scalar to be determined. 

During active plastic deformation the yield function must be satisfied 

continuously, so that the consistency condition is 

Cdoij-daij)3f/3(yij = 0 (5) 

The original kinematic hardening concept was Prager's rule (ref 13) that 

2 
day = (- H'MeijP and H' - da/deP (6) 

Prager's rule was used in the ADINA formulation although its modification by 

Ziegler (ref 14) is more popular.  Equations (1) through (6) are the basic 

equations of the elastic-plastic theory.  In addition, we need the elastic 

stress-strain relation 

d<3ij   "  Eijmn(d£mn-demnp) ^7a) 

where E-H^ is  the elastic  constitutive  tensor.     If  the material  is  initially 

isotropic, then 

Eijmn '  ~   tHm^jn + ~~  ^ijW ' (7b) 

where  E  and v   are  the Young's  modulus  and Poisson's  ratio,   respectively. 



Using the basic equations (1) to (7), we can obtain the incremental 

stress-strain relation for elastic-plastic material models 

day = Dijmn deran (8a) 

where 
Eiitu Itu 'Ivw ^vwmn ,     . 

n    - v, .    i  ^8b^ 
'-•iimn  ^ijmn  ui 4. a. , w, ,   „ J " + ^kl ^klrs ^rs 

This constitutive relation holds for the combined isotropic-kineraatic 

hardening model.  For the special cases using Eqs. (2) to (4), we have 

isotropic hardening:   q^ = 3s^/{2a) 

kinematic hardening:   q-y = 3(3^-0^ )/(2a) 

(9a) 

(9b) 

FINITE ELEMENT FORMULATION 

The finite element formulation used in the ADINA code is very general and 

large strain dynamic analysis has been considered (refs 11,12).  Since the 

present problem requires only a small strain static analysis, a very brief 

summary of the special formulation is presented here.  The geometry of the 

body is discretized by two-dimensional 8-nodes isoparametric elements.  The 

coordinates and displacements are interpolated by the same shape functions %, 

i = 1 to 8, i.e. , 

x = N-jXi  ,  u = Njui  ,  etc. (1°) 

where Xi, yi, ut, vt  are the coordinates and displacements at the nodal 

points.  The strain increments in elements can be obtained by differentiation 

and in matrix notation we have 

{Ae} = [BJUU}  and  [B] = [L] [N] OD 

where [L] is a linear differential operator and {AU} is a vector of all nodal 

displacement increments in an element. 



Once we know [D] and [B], we can compute the element stiffness matrix by 

[K] = / [B]T[D][B] d(vol) (12) 
v 

To carry out numerical integration, we express all matrices and volume element 

in terras of local coordinates and evaluate them at Integration stations with 

the aid of Gauss quadrature formulae.  For double summation we use either 

(2x2) or (3x3) points in a rectangle.  This finite element formulation is 

based on displacements so the kinematic equations and constitutive equations 

are satisfied locally.  The principle of virtual displacements is used to 

express the equilibrium of the body in the current configuration.  Since the 

principle is in integral form, we can sum all element contribution to the 

system. 

THICK TUBES 

Consider a long thick tube, internal radius a, and external radius b, 

which is subjected to internal pressure p.  Thick tubes of different wall 

ratios are considered.  The geometry of the tube is discretized by two- 

dimensional axisymmetric 8-nodes isoparametric elements along the radial 

direction.  We use 10 elements for smaller wall ratios (b/a = 1.5 and 2.0) and 

20 elements for larger wall ratios (b/a =3.0 and 4.63).  All elements are of 

equal size and 3x3 points are used in carrying out the numerical integration. 

The displacements at the nodal points and the stresses at the Integration 

points are obtained as functions of loading history.  At each stage of 

loading, we have N+l results for the displacements and 3N results for the 

stresses where N is the number of elements used. 



The common input data for both material models are E = 2.583x10' psi, v = 

0.3, and 6 points on the uniaxial stress-strain curve, i.e., (a in Ksi, e in 

%) = (155, 0.6), (167, 0.85), (172, 1.25), (177, 3.0), (181, 5), (181, 15). 

These six points are chosen to give a piecewise linear representation to the 

actual stress-strain curve for a high strength steel as shown in Figure 1. 

The ADINA code allows a maximum of 7 points to represent two multi-linear 

hardening models (model number 8 and 9 for isotropic and kinematic hardening). 

These two hardening models are widely used because of their simplicity. 

Isotropic hardening is generally considered to be a suitable model for large 

plastic flows. Kinematic hardening is the simplest theory that can model the 

Bauschinger effect.  If unloading does not occur, there is no difference 

between these two models.  For unloading with reverse yielding, the finite 

element results based on these two models will be different. 

The loading and unloading problems in thick tubes of different wall 

ratios have been analyzed using the ADINA code and two hardening models.  The 

tubes of wall ratios 1.5 and 2.0 have been loaded to reach fully plastic state 

and then unloaded completely. No reverse yielding occurs during unloading for 

tubes with both wall ratios and the usual assumption of elastic unloading is 

justified on the basis of these two material models.  The numerical results 

for the tube with b/a = 2 are shown in Figures 2 through 4.  Figure 2 shows 

the boundary displacements (Ua and U^) as functions of pressure history.  We 

use 11 steps during loading and 2 steps during unloading.  Figure 3 shows the 

hoop stress distribution at different t steps (t = 1, 6, 11, 13) where t is a 

time-like parameter for the purpose of bookkeeping.  Figure 4 shows the 

distributions of residual radial and axial stresses and equivalent plastic 



strain.  The residual stresses are considered to be elastic according to these 

two models.  The unloading process may not be purely elastic if other models 

(ref 4) are used. Future work should search for a more realistic model 

including the Bauschinger effect in a high strength steel (ref 15). 

Experimental measurements, if available, should be used for comparison with 

numerical predictions. 

The tube of wall ratio 3(a ■ 1", b = 3") has also been loaded to reach 

fully plastic state and then unloaded completely.  We use 11 steps during 

loading and 4 steps during unloading.  Figure 5 shows the boundary displace- 

ments (Ua and U^,) as functions of pressure history.  The numerical results for 

the displacements during unloading are very close between the two models. 

However, there are noticeable differences in the size of reverse yielding and 

the stresses within a small zone near the bore. There are 60 stations along 

the radial direction at which the stresses are calculated.  At the end of 

complete unloading, reverse yielding occurs at 3 or 7 stations near the bore 

according to isotropic or kinematic models, respectively.  Figure 6 shows the 

stresses at a point near the bore as functions of pressure history.  The 

differences between the two models for the hoop and axial stresses during 

unloading are not small as can be seen in the figure. 

Finally, the autofrettage solution for a closed volume chemical "bomb", 

is obtained for a tube with a - 0.865" and b = 4.005".  The tube is loaded to 

p = 250 Ksi in 10 steps and then unloaded completely in 5 steps.  At maximum 

pressure, 26 of its 60 stations have become plastic.  At the end of complete 

unloading, reverse yielding occurs at 2 or 5 stations near the bore according 

to isotropic or kinematic models, respectively.  Figure 7 shows the boundary 



displacements (Ua and U^,) as functions of pressure history.  There are small 

differences for the displacements during unloading based on two models.  The 

results for the stresses within the inner half of the tube are presented in 

Figures 8 and 9. Figure 8 shows the hoop stress at different stages of 

loading and unloading.  Three stages (t = 1, 10, 15) represent the stage 

corresponding to initial yielding, maximum loading, and complete unloading, 

respectively.  The differences for the hoop stresses during unloading based on 

two hardening models, are not small as can be seen in this figure. Figure 9 

shows the differences for the axial and radial stresses within the inner half 

of the tube after complete unloading. 
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Figure 3.  Hoop Stress Distribution at Different Stages of Loading, 
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Figure 4.  Distribution of Radial and Axial Stresses 
and Equivalent Plastic Strain After Complete 
Unloading. 
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Figure 8. Distribution of Hoop Stress in the Inner Half 
at Different Stages of Loading. 
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